F-radiolabeled Porous Silicon Particles for Drug Delivery Tracer Development and Evaluation in Rats

نویسنده

  • Mirkka Sarparanta
چکیده

Poor biopharmaceutical properties such as low solubility and low permeability in the gastrointestinal (GI) tract plight many existing drugs and new chemical entities, presenting an impediment for efficient drug therapy. Incorporation of the drug to a delivery system based on a nanostructured material is increasingly investigated as a strategy to overcome these limitations and to achieve controlled and targeted delivery. Porous silicon (PSi) is a promising material for carrier-mediated drug delivery because of its biocompatibility, high chemical stability, and facile elimination from the body. Moreover, the physicochemical properties of PSi can be tailored by variation of the fabrication parameters and surface modifications to suit diverse payloads. Positron emission tomography (PET), a sensitive and quantitative method of molecular imaging, is a potent tool for drug delivery system development. Already at the preclinical stage PET can be employed for the investigation of drug delivery carrier biodistribution in vivo, thereby facilitating the selection of the most promising material candidates for further development and future drug delivery studies. In this dissertation, a direct nucleophilic radiolabeling method with a short-lived positron emitter fluorine-18 (18F) was developed for three different surface-modified PSi materials: thermally hydrocarbonized PSi (THCPSi), thermally carbonized PSi (TCPSi), and thermally oxidized PSi (TOPSi). Out of the investigated materials, nanosized [18F]THCPSi emerged as the one with the highest potential for imaging and drug delivery in terms radiolabeling yield, label stability, and bio­ compatibility in cell models in vitro, and was therefore forwarded to bio­ distribution studies in rats. After oral administration, [18F]THCPSi nanoparticles were shown to pass intact through the GI tract in 4 to 6 hours. Modification of [18F]THCPSi with a self-assembled layer of a fungal hydrophobin (HFBII) changed the hydrophilicity of the material bringing about bioadhesive properties that promoted gastric retention of the protein-coated nanoparticles. Intravenous delivery of [18F]THCPSi nanoparticles resulted in their rapid accumulation to the liver and spleen alluding to rapid immune recognition and removal of the particles from the bloodstream by macrophages of the mononuclear phagocyte system (MPS). HFBII-coating of the nanoparticles altered the adsorption of plasma proteins to the particle surface, which translated also to a change in the biodistribution pattern in vivo. In conclusion, the present work establishes 18F-radiolabeled particle tracers as useful means for the evaluation of new PSi-based drug delivery systems with PET.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Biocompatibility of thermally hydrocarbonized porous silicon nanoparticles and their biodistribution in rats.

Porous silicon (PSi) particles have been studied for the effects they elicit in Caco-2 and RAW 264.7 macrophage cells in terms of toxicity, oxidative stress, and inflammatory response. The most suitable particles were then functionalized with a novel (18)F label to assess their biodistribution after enteral and parenteral administration in a rat model. The results show that thermally hydrocarbo...

متن کامل

Preparation and quality control of radiolabeled streptokinase for Thrombosis imaging

Background: In order to diagnose the site of thrombi, radiolabeled streptokinase can be prepared. The radiolabeled compound can be used in imaging of thrombi in many cardiovascular diseases. Materials and Methods: Streptokinase was successively labeled with [67Ga]-gallium chloride using cyclic DTPA-dianhydride. The conjugation with DTPA was optimized for concentration, time and temperature foll...

متن کامل

Evaluation of radiolabeled streptokinase for thrombosis imaging

  Introduction: Cardiovascular disease is the major cause of morbidity and mortality in developing and developed countries. Rapid diagnosis of the thrombosis can be an essential step in management of the stroke. Methods: In this work a recently developed radiolabeled streptokinase (STP) tracer was evaluated in an animal thrombotic model using SPECT imaging and biodis...

متن کامل

Controlled Release of Dexamethasone From an Intravitreal Delivery System Using Porous Silicon Dioxide

PURPOSE The current study aims to evaluate a porous silicon-based drug delivery system meant for sustained delivery of dexamethasone (Dex) to the vitreous and retina. METHODS Dexamethasone was grafted covalently into the pore walls of fully oxidized porous silicon particles (pSiO2-COO-Dex), which then was evaluated for the pharmacological effect of the payload on cultured ARPE19 cells before ...

متن کامل

Tailored porous silicon microparticles: fabrication and properties.

The use of mesoporous silicon particles for drug delivery has been widely explored thanks to their biodegradability and biocompatibility. The ability to tailor the physicochemical properties of porous silicon at the micro- and nanoscale confers versatility to this material. A method for the fabrication of highly reproducible, monodisperse, mesoporous silicon particles with controlled physical c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012